

Opportunity for Investment

www.afarakgroup.com

Introducing Afarak

- A vertically integrated ferroalloys producer from mine to customer
- Supplies specialist products to steel & stainless steel industries:
- Diversified product mix:
 - Adaptable to customer requirements & general market demand
 - ➢Offers protection in challenging markets
- Focused on shareholder value through profitability & growth

A Global Footprint

EWW.

Key jurisdictions

Helsinki Listing

Overview

Germany Afarak is an integrated mining and minerals company listed on Nasdaq OMX Helsinki and LSE. ➢ In 2008, Afarak began a London TMS (0) Listing transform action into a mining Turkey company focused primarly on RCS Malta the ferroalloys segment. Currently producing Waylox (1) ferrochrome, chrome-ore and Zimbabwe Vining. Processing silico-manganese. Mining & Processing Stellite Mine, Mogale & Mecklenberg (1) Sales South Africa

Business overview

Business overview

- Afarak mines and process chrome, and markets and sells a range of chrome products to customers around the world, from chrome ore to high quality speciality alloys used in various high growth end-user segments.
- Afarak's business comprises of two vertically integrated business segments: Speciality Alloys and FerroAlloys, and a sales and marketing operation, RCS Limited.
 - Speciality Alloys produces low carbon (LC) ferrochrome and ultra low carbon (ULC) ferrochrome products. The business is consisted of a Turkish mining operation, TMS, and a German processing plant, EWW.
 - FerroAlloys, located in South Africa, includes Stellite and Mecklenburg mine, Mogale processing plant and two development projects namely Zilkaatsnek and Vlakpoort.

Speciality Alloys - Mining

TMS-Turkey

- ➤ TMS was acquired in 2008 as the Company entered in mining and mineral business. Its operations include open pit and undergorund mines, and ore enrichemenet facilities equipped with primary and secondary crushing, milling and concentraiton tables. These production facilities are located in Kavak, Ekisehir province, and in Tavas, Denizli province. TMS recently acquired new resources (Eagle) and currently holdes 31 licenses, of which 13 are exploitation licenses.
- TMS produce high grade chrome concentrate and lumpy ores, providing the Company with high quality chrome concentrate for processing by its European mineral processing business, EWW. Excess concentrates and ores are sold directly to third parties by RCS.
- Chrome ore mined by TMS are low in phosphor and sulphur, making them ideal for smelting. It also contains a favourable ratio of chrome to iron that can be easily used in specialized stainless steel products.
- > Current annual production capacity of TMS is approximately 120,000 tonnes.

Type of product	Specification	Production capacity
High-grade chrome concentrate	Cr ₂ O ₃ 48% min (50% typical) Size: 0-2 mm	
Lumpy chrome ore (1)	Cr ₂ O ₃ 40% min (42% typical) Ratio: Cr/Fe 2.9/1 min (3.0/1 typical), S 0.005%, P 0.002%, SiO ₂ 10% max Size: 10-300mm 70% 0-10mm 30% max	100,000-120,000tpa of both high-grade chrome concentrate and lumpy ore
Lumpy chrome ore (2)	Cr ₂ O ₃ 36% min (38% typical) Ratio: Cr/Fe 2.8/1, S 0.005%, P 0.004%, SiO ₂ 13% Size: 10-300mm 70% 0-10mm 30% max	

Speciality Alloys - Processing

EWW - Germany

- EWW is a Germany-based smelting factory acquired by Afarak in May 2012. Prior to that Afarak had a long term tolling agreement to use the facility. The factory sources its high-grade chrome ore from TMS mines in Turkey.
- EWW produces LC and ULC ferrochrome that are generally used in highly specialized industries such as automotive, aerospace and power generation. The Company has a well established market position in ULC ferrochrome and in practice is the only provider of certain special grades.
- > The plant has a 25 MVA smelting capacity with four fournaces. At present the designed capacity is approximately 30,000 tonnes per annum.

High Chrome Low Cobalt LC Ferrochrome	Extra High Chrome Low Cobalt LC Ferrochrome	LC Ferrochrome Nitrogen containing molten
•Cr 76.5% min	•Cr 82-88%	•Cr 63% min
•C 0.035% max	•C 0.05% max	•C 0.10 max/ 0.050% max
•Si 1.5% max	•Si 1.5% max	•Si 1.5% max
•P 0.025% max	•P 0.02% max	•P 0.03% max
•S 0.01% max	•S 0.01% max	•S 0.02% max
•N 0.05% max	•N 0.1% max	•N 3-4%
•Co 0.03% max	•Co 0.02% max	•Size: 5x50/100/150mm
•Size: 5x50/100/150mm	•Mn 0.5% max	
	•V 0.3% max	
	•Size: 5x50/100/150mm	
Low Nitrogen I C Ferrochrome		
	Extra LC Ferrochrome	Standard I.C. Ferrochrome
	Extra LC Ferrochrome	Standard LC Ferrochrome
	Extra LC Ferrochrome	Standard LC Ferrochrome
•Cr 69% min	•Cr 68% min	•Cr 68% min
•Cr 69% min •C 0.05% max	•Cr 68% min •C 0.015-0.03%	Cr 68% min •C 0.03-0.1%
•Cr 69% min •C 0.05% max •Si 0.30% max	•Cr 68% min •C 0.015-0.03% •Si 1.5% max	Cr 68% min C 0.03-0.1% Si 1.5% max
•Cr 69% min •C 0.05% max •Si 0.30% max •P 0.025% max	•Cr 68% min •C 0.015-0.03% •Si 1.5% max •P 0.03% max	*Cr 68% min *C 0.03-0.1% *Si 1.5% max *P 0.03% max
 Cr 69% min C 0.05% max Si 0.30% max P 0.025% max S 0.01% max 	•Cr 68% min •C 0.015-0.03% •Si 1.5% max •P 0.03% max •S 0.02% max	*Cr 68% min *C 0.03-0.1% *Si 1.5% max *P 0.03% max *S 0.02% max
 Cr 69% min C 0.05% max Si 0.30% max P 0.025% max S 0.01% max N 0.02% max 	 Cr 68% min C 0.015-0.03% Si 1.5% max P 0.03% max S 0.02% max Size: 5x50/100/150mm 	*Cr 68% min *C 0.03-0.1% *Si 1.5% max *P 0.03% max *S 0.02% max *Size: 5x50/100/150mm
 Cr 69% min C 0.05% max Si 0.30% max P 0.025% max S 0.01% max N 0.02% max Size: 5x50/100/150mm 	 Cr 68% min C 0.015-0.03% Si 1.5% max P 0.03% max S 0.02% max Size: 5x50/100/150mm 	*Cr 68% min *C 0.03-0.1% *Si 1.5% max *P 0.03% max *S 0.02% max *Size: 5x50/100/150mm

Above are representative specifications.

FerroAlloys – Mining

The Stellite mine - South Africa

- Stellite, a part of Chromex Mining acquired in 2010, is located on the western limb of the Bushveld Complex in South Attica where 70% of the world's chrome resources are located.
- The mine has a chromite resource of 28.6 Mt comprising five seams, namely LG6, MG1, MG2, MG3 and MG4. All four seams outcrop on the property.
- ➤ The mine has a New Order Mining Right and the BEE* partners own 19% of the operation.
- The mine commenced operations in July 2008. The open cast mining is outsourced to a contractor. The benefication plant comprises of a dense media separation (DMS) plant and a spiral circuit, which has a ROM feed capacity of 40,000 tonnes per month, The mine produces 42% and 44% metallurgical grade chrome concentrates. which are processed at Mogale. Lumpy chrome ore with less chrome content are exported to China.
- > The production capacity of sellable products is approximately 300,000 tonnes per annum.

The Mecklenburg mine - South Africa

The Mecklenburg mine is located on the eastern limb or the Bushveld Complex. The mine has LG6 and LG7 chromite reefs, with estimated resources of 9.7 Mt. The mine commenced operation in 2013.

The Vlakpoort mine development project - South Arica

The Company recently signed a purchase agreement to acquire the Vlakpoort prospecting right. It is located in the Limpopo region 100 km from the Stellite mine. The Vlakpoort mine is estimated to have as much as 12.6 Mt resources, with 8.4 Mt for open cast and the remainder underground. The mine will commence production in 2014.

The Zilkaatsnek mine development project - South Africa

The Company applied to the DMR for the prospecting right for the Zilkaatsnek. The mine is indicated to have a 10.9 Mt resources.

The Waylox mine development project - Zimbabwe

Company has chrome rights for Waylox mine which is located on the Great Dyke in Zimbabwe. It is a small alluvial deposit with high grade chrome deposit.

* BEE: Black economic empowerment, an initiative to bring black majority into the economic mainstream in South Africa

FerroAlloys - Processing

Mogale Alloys - South Africa

- Mogale Alloys is located near Johannesburg in South Africa. The plant has a 96 MWA smelting capacity and operates with four furnaces. There are two submerged arc furnaces and two DC furnaces that produce plasma ferrochrome, silicomanganese and stainless steel alloys.
- > Combined annual capacity is around 110,000 tonnes.
- The Company is currently conducting a feasibility study for a conversion of Mogale into a speciality ferrochrome producer. The plan is to further process the charge chrome into MC ferrochrome which is expected to significantly improve the profitability of the plant.

Type of product	Specification	Production capacity**
Plasma Ferrochrome	Guaranteed: Cr 50-53% C 9% max Si 1.5% max P 0.010 or 0.020% max S 0.025% max Size: 5x80 mm typical	 2 furnaces: 62,000 tpa, including: 1 large furnace: 50,000 tpa 1 small furnace: 12,000 tpa
Silicomanganese	Guaranteed: Mn 65% min P 0.1% max Si 16% min S 0.05% max C 1.8% max Size: 5x80/100 mm	2 furnaces: 48,000 tpa
Stainless Steel Alloy	Typical: Ni 1-4% P 0.02-0.033 % Cr 39-45,5% S 0.01-0.02 % Fe 42-47% Ti 0.40% C 7.8-8.2% Mn 0.6-0.9% Si 1-1.3% Size: 10x150/200 mm	 2 furnaces: 49,000 tpa, including: 1 large furnace: 40,000 tpa 1 small furnace: 9,000 tpa

** Production capacity: two furnaces are designated to produce silicomanganese and the remaining two can produce either plasma ferrochrome or stainless steel alloy

Sales and Marketing - RCS

Sales & marketing

- The Company performs sales, marketing and logistics operations through RCS limited, which was acquired in 2008. RCS sells the chrome products to customers in USA. Europe and Japan most of whom are producers of special grades of stainless steel supplying high growth end-user segments. RCS also sells lumpy ores to stainless steel producers in China and India.
- The centralized in-house sales and marketing function is well-informed on market changes and relays customers' feedback to the production team to guide the mining and production plans, and also to help the Company manage the inventory efficiently
- With RCS. it is easier for the Company to secure the long-term contracts and thus enable the Company to maintain a good relationship with customers, and to increase visibility and predictability of the business
- As a vertically integrated company, Afarak differentaties itself from competitors by capturing upstream or downstream profit margins and achieves economies of scale. RCS has sufficient resources to provide these services also for other minerals businesses to be acquired in the future.

Expand to become a top producer within the shortest possible time period

Organic growth

- Increase chrome and related products
- Expand processing capacity
- □ Secure own ore supply

Mergers and Acquisitions

ConsolidationPool and share ventures

Afarak Strategic Vision

It is Afarak Group's strategy to vertically integrate the FeCr supply chain, by supplying power, reductants, chrome ores and fluxes into its FeCr furnaces, thereby becoming a self sufficient supplier that will be less exposed to external influences on input costs

Investment Policy	It is Afarak investment strategy to source the supply of all raw materials and processing capacity of FeCr, in order to capture larger market share of the FeCr and similar markets
Business Focus	Mining of Chrome ores and associated minerals Mining of Reductants Manufacturing of speciality FeCr products
Competitive Advantage	Focussing on High Grade Chrome ore as well as speciality FeCr products whilst integrating the business to ensure supply of raw materials
Strategic Assets	<u>Mogale FeCr & SiMn</u> <u>Afarak Mining – Cr ores</u> <u>EWW – Speciality FeCr</u> <u>TMS – High Grade Cr Ores</u>
Investment Opportunities	There is a steady growth in the stainless steel market demand that can only be sustained through the increase of FeCr supply. Afarak is positioning itself to become a competitive player in the market, based on price and volume
Group Structure	Afarak complies with the Finnish Corporate Governance Code as well as the South African Mining Charter

Afarak Group Business Model

Background to Investment Opportunities

- The world has lived on the back of cheap commodities. In general the thirdworld countries are the producers. The terms of trade are now changing !
 - ➢For a long time producers in the World had enough supply of raw materials and energy. This situation is changing rapidly, especially where energy is concerned.
 - Prices will continue to rise due to expanding consumption in China & India. This has changed the market dynamics.

Competitive operating cost (OPEX) is the KEY.

Afarak will source:

Supply of electricity at a lower cost than current supplier
New cost effective raw material production of chrome, coal and silica

Afarak as a raw material producer -

is flexible in terms of volumes and needs of the marketsIs responsive to varying demand, shifting patterns, etc.

Resources and Reserves – Europe (1/2)

		Proven reserves	Probable	Possible		Total reserves	Hypothetical
Ore zone/ body	Cr2O2 %	(tonnes)	(tonnes)	(tonnes)		(tonnes)	Resources (tonnes)
KAVAK CONCESSIONS							
Incir	32-41	10 000				10 000)
Kismet	30-41	50 000				50 000)
Bogurtlen	20-22	10 000				10 000)
Dereici	16-20	27 500				27 500)
CamaGirlik 2	16-18	60 000				60 000)
Erenler	7-10	2 020 000				2 020 000)
Erenler 2-4-18	16-35	128 500				128 500	2 500 000
ΤΟΤΑΙ	7-41	2 306 000		0	0	2 306 000	2 500 000
BEYAGAC CONCESSIONS							
Sarp Oc.	22-28	200			800	1 000	9 000
Gogebakan Oc.	20-22	250			750	1 000	4 000
Cigerderesi Ocak	19-22	350			650	1 000	14 000
Dere Ocak	21-24	1 000				1 000)
Catak	18-20	2 500			2 500	5 000	10 000
Cinar Ocak	28-34	65 000			120 000	185 000	200 000
Balkan Ocak	27-30	3 000			7 000	10 000	15 000
Keller Oc.	14-16	10 000			10 000	20 000	20 000
Gehremen Oc.	24-26	25 000			20 000	45 000) 55 000
ΤΟΤΑΙ	14-34	107 300		0	161 700	269 000	327 000
FETHIYE & KOYCEGIZ CO	NCESSION	s					
Cubuk	12-14	20 000			3 000	23 000	7 000
Umut	8-10	100 000			100 000	200 000	100 000
Asarcik	22-26	350			650	1 000	1 000
Mesebuku	24-28	1 500			3 500	5 000	10 000
Kizil Akdag	16-20	200			300	500	500
TOTAL	8-28	122 050		0	107 450	229 500	118 500

Resources and Reserves – Europe (2/2)

	Pr	oven reserves Probable	Possib	le To	otal reserves	Hypothetical
Ore zone/ body	Cr2O2 % (t	onnes) (tonnes)	(tonne	s) (te	onnes)	Resources (tonnes)
ADANA CONCESSIONS						
Egni	12-14	3 000		2 000	5 000	5 000
Sogukoluk	12-14	3 000		2 000	5 000	5 000
TOTAL	12-14	6 000	0	4 000	10 000	10 000
EAGLE CONCESSIONS						
	36-44	10 000		10 000	20 000	150 000
TOTAL	36-44	10 000	0	10 000	20 000	150 000
KAVAK TAILINGS DAM						
Tailings Dam 1	7-13	950 000			950 000	
Tailings Dam 2	7-13	2 012 375			2 012 375	
Tailings Dam 3	4-6	464 777			464 777	
TOTAL	4-13	3 427 152	0	0	3 427 152	0
TAVAS TAILINGS DAM						
Tailings Dam	9-11	500 391			<u>500</u> 391	
TOTAL	9-11	500 391	0	0	500 391	0
GRAND TOTAL		6 478 893	0	283 150	6 762 043	3 105 500

Resources and Reserves – Africa (1/3)

			Proved		Probable			Measured			Indicated			I	nferred		Total			
	Seam	Tonnes	Cr2O3 % Cr	r:Fe ratio	Tonnes	Cr2O3 % Cr	:Fe ratio	Tonnes	Cr2O3% Cr	:Fe ratio	Tonnes	Cr2O3 %	Cr:Fe	Tonnes	Cr2O3 %	Cr:Fe	Tonnes	Cr2O3 %	Cr:Fe	
Ore zone													ratio			ratio			ratio	
	UG2																0 -		-	
	MG4	592	31	1,21	1 101	32	1,21	5 400	33	1,24	2 650	33	1,25	1 480	33	1,24	11 223	32	1,23	
	MG3	129	32	1,33	339	32	1,31	3 220	34	1,24	2 030	34	1,27	790	35	1,3	6 508	33	1,29	
Stallita	MG2	167	31	1,23	259	31	1,22	180	37	1,31	320	37	1,31	210	37	1,32	1 136	35	1,28	
Jtenne	MG1	228	33	1,31	355	33	1,31	3 620	35	1,29	1060	37	1,31	80	39	1,41	5 343	36	1,33	
	MG0																0 -		-	
	LG1-6	332	35	1,40	353	35	1,41	5 920	38	1,41	1880	38	1,4	357	47	1,44	8 842	38	1,41	
	Total	1 448	32	1,30	2 407	32	1,29	18 340	35	1,30	7 940	36	1,31	2 917	38	1,34	33 052	35	1,31	
	UG2																0 -		-	
	MG4																0 -		-	
	MG3																0 -		-	
Mecklenhurg	MG2																0 -		-	
Meenenburg	MG1																0 -		-	
	MG0																0 -		-	
	LG1-6	2870	31	1,57	1933	41	1,57	4495	43	1,59	3299	43	1,59	1820	43	1,59	14 417	41	1,58	
	Total	2 870	31	1,57	1 933	41	1,57	4 495	43	1,59	3 299	43	1,59	1 820	43	1,59	14 417	41	1,58	
	#REF!																0 -		-	
	UG2																0 -		-	
	MG4													931	30	1,28	931	30	1,28	
	MG3													255	33	1,32	255	33	1,32	
Zilkaatsnek	MG2													5 035	34	1,31	5 035	34	1,31	
	MG1													4 553	36	1,43	4 553	36	1,43	
	MG0													149	30	1,29	149	30	1,29	
	LG1-6																0 -		-	
	Total													10 923	33	1,32	10 923	33	1,32	

A F A R A K

Resources and Reserves – Africa (2/3)

		Measured Measu			Measure	Aeasured Measured					Indicated			Inferred			Total		
	Seam	Tonnes	Cr2O3 % C	r:Fe ratio	Tonnes	Cr2O3 %	Cr:Fe ratio	Tonnes	Cr2O3 % C	r:Fe ratio	Tonnes	Cr2O3 %	Cr:Fe	Tonnes	Cr2O3 %	Cr:Fe	Tonnes	Cr2O3 %	Cr:Fe
Ore zone													ratio			ratio			ratio
	UG1-2													8 400	30	1,21	8 400		-
	MG4													619	27	1,04	619	27	1,04
	MG3													1 857	28	1,40	1857	28	1,40
Vlakpoort	MG2													583	36	1,37	583	36	1,37
Vianpoore	MG1													154	41	1,29	154	41	1,29
	MG0																0		-
	LG1-6													12 000	43	1,55	12 000	43	1,55
	Total													23 613	34	1,31	23 613	35	1,33
	UG2																0		-
	MG4																0		-
	MG3																0		-
Waylox	MG2																0		-
	MG1																0		-
	MG0																0		-
	LG1-6													152	27,00	2,40	152	27	2,40
	Total													152	27,00	2,40	152	27	2,40
	UG1-2	0			0	-	-	0			0	-	-	8 400	30	1,21	8 400	30	1,21
	MG4	592	31	1,21	1 101	32	1,21	5 400	33	1,24	2 650	33	1,25	3 030	30	1,19	12 773	32	1,22
	MG3	129	32	1,33	339	32	1,31	3 220	34	1,24	2 030	34	1,27	2 902	32	1,34	8 620	33	1,30
	MG2	167			259			180			320	37	1,31	5 828	36	1,33	6 754	36	1,32
	MG1	228	33	1,31	355	33	1,31	3 620	35	1,29	1060	37	1,31	4 787	39	1,38	10 050	36	1,32
	MG0	0			0	-	-	0			0	-	-	149	30	1,29	149	30	1,29
	LG1-6	3 202	33,19	1,49	2 286	38	1,49	10 415	41	1,50	5 179	41	1,50	14 329	41	1,48	35 411	39	1,49
	Total	4 318	32,38	1,33	4 340	34	1,33	22 835	36	1,32	11 239	36	1,33	39 425	35	1,33	82 157	34	1,31

Resources and Reserves – Africa (3/3)

			Measured		Indicated				Inferred		Total			
Ore zone	Seam	Tonnes	PGM g/t	Ounces	Tonnes	PGM g/t	Ounces	Tonnes	PGM g/t	Ounces	Tonnes	PGM g/t	Ounces	
	MR													
	UG2										0_	-	-	
	MG4	3 420	1,18	129 762	3 900	1,23	154 244	2 170	1,30	90 707	9 490	1,23	374 714	
	MG3	1960	1,81	114 071	2 830	1,79	162 884	1 260	1,52	61 582	6 050	1,74	338 537	
Stellite	MG2	110	1,62	5 730	260	1,66	13 878	350	1,72	19 357	720	1,68	38 965	
otenite	MG1	2 310	0,79	58 678	1 940	0,80	49 904	500	0,77	12 379	4 750	0,79	120 961	
	MG0										0	-	0	
	LG1-6	3 230	0,63	65 431	3290	0,54	57 125	1667	0,47	24 959	8 187	0,56	147 516	
	Total	11 030	1,05	373 672	12 220	1,11	438 035	<i>5 9</i> 47	1,09	208 985	29 197	1,09	1 020 693	
	MR												-	
	UG1-2										0	-	-	
	MG4										0	-	-	
	MG3										0	-	-	
Mecklenburg	MG2										0	-	-	
	MG1										0	-	-	
	MG0										0	-	-	
	LG1-6	4495	0,45	65 040	3299	0,45	47 735	1867	0,50	30 143	9 661	0,46	142 918	
	Total	4 495	0,45	65 040	3 299	0,45	47 735	1 867	0,50	30 143	9 661	0,46	<i>142 918</i>	
	MR							2300	1,92	141 994	2 300	1,92	141 994	
	UG1-2							8400	3,96	1 069 968	8 400	3,96	1 069 968	
	MG4							619	1,68	33 438	619	1,68	33 438	
	MG3							1 857	2,78	165 995	1 857	2,78	165 995	
Vlakpoort	MG2							583	1,30	24 370	583	1,30	24 370	
	MG1							154	1,40	6 932	154	1,40	6 932	
	MG0										0	-	0	
	LG1-6							12 000	0,45	175 333	12 000	0,45	175 333	
	Total							23 613	1,93	1 618 030	23 613	2,13	1 618 030	
	MR												-	
	UG1-2										0	-	-	
	MG4										0	-	-	
	MG3										0	-	-	
Waylox	MG2										0	-	-	
,	MG1										0	-	-	
	MG0										0	-	-	
	LG1-6							152	0,40	1 955	152	0,40	1 955	
	Total							152	0,40	<i>1 955</i>	152	0,40	<i>1 955</i>	
	mr	0	-	0	0	-	0	2 300	1,92	141 994	2 300	1,92	<i>141 994</i>	
	UG1-2	0	-	0	0	-	0	8 400	3,96	1 069 968	8 400	3,96	1 069 968	
	MG4	3 420	1,18	129 762	3 900	1,23	154 244	2 789	1,49	124 145	10 109	1,26	408 152	
	MG3	1 960	1,81	114 071	2 830	1,79	162 884	3 117	2,15	227 577	7 907	1,98	504 532	
	MG2	110	-	5 730	260	1,66	13 878	933	1,51	43 727	1 303	1,51	63 334	
	MG1	2 310	0,79	58 678	1 940	0,80	49 904	654	1,09	19 312	4 904	0,81	127 894	
	MG0	0	-	0	0	-	0	0	-	0	0	-	0	
	LG1-6	7 725	0,54	130 471	6 589	0,50	104 860	15 686	0,47	232 390	30 000	0,48	467 722	
	Total	15 525	1,08	438 712	15 519	1,20	485 770	33 879	1,80	1 859 113	62 623	1,38	2 783 595	